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ABSTRACT

This paper applies the theory of Semi-Markov Processes to the construction

of a stochastic model for interpreting data obtained from clinical trials. The

model characterizes the patient as being in one of a finite number of states at

any given time with an arbitrary probability distribution to describe the length

of stay in a state. Transitions between states are assumed to be chosen

according to a stationary finite Markov chain.

Other attempts have been made to develop stochastic models of clinical

trials. However, these have all been essentially Markovian with constant

transition probabilities which implies that the distribution of time spent during

a visit to a state is exponential (or geometric for discrete Markov chains).

Markov models need also to assume that the transitions in the state of a patient

depend only on absolute time whereas the Semi-Markov model assumes that

transitions depend on time relative to a patient. Thus the models are applicable

to degenerative diseases (cancer, acute leukemia), while Markov models with

time dependent transition probabilities are applicable to colds and epidemic

diseases. In this paper the Laplace transforms are obtained for (i) probability

of being in a state at time t, (ii) probability distribution to reach absorption

state and (iii) the probability distribution of the first passage times to go from

initial states to transient or absorbing states, transient to transient, and transieni

to absorbing. The model is applied to a clinical study of Acute Leukemia which

have been treated with methotrexate and 6-mercaptopurine. The agreement of

the data and the model is very good.
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1. Introduction

There are many diseases which can be characterized by the patient being

in one of a finite number of states such that the sojourn time within a state is

a random variable. For example, many clinical trials can be described as a

course of treatment given to a patient who is in a state of illness or relapse,

in the hope that the therapy will ultimately cure the patient or bring him into

some degree of remission. During the course of the treatment the patient may

be in remission and relapse states several times. When evaluating such courses

of therapy in clinical trials it is important to be able to discuss various

statistical characteristics of the therapy; i. e., proportion cured or reaching a

remission state, time to reach a given state for the first time, the first passage

time to cure or death, the probability of being cured or reaching remission as a

function of the duration of therapy, etc.

As a possibly more concrete motivation for the theory which follows, we

mention the problem which stimulated our work. At the present time acute

leukemia cannot be cured by any known therapy. It is known, however, that

1 Sponsored in part by the Mathematics Research Center, U.S. Army, Madison,

Wisconsin, under Contract No. DA-11-022-ORD-2059 and in part by Contract
NONR 595(17).

Institute of Fluid Dynamics and Applied Mathematics, University of Maryland

and National Bureau of Standards.

Mathematics Research Center, U.S. Army.
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certain drugs can prolong a patient's life, or the period of relative freedom

from symptoms characteristic of the disease. Currently a large-scale clinical

program is underway, sponsored by the National Institutes of Health, to test

the efficacy of many chemical agents on the course of the disease, with the

object of being able to prolong life, if indeed it is not possible to discover

an absolute cure. Hence, it is necessary to have idealized models which can

be used as a framework for the analysis of the data. Perhaps the most important

use of a model is as a guide in deciding the types of data to be taken during the

course of a series of clinical trials. It is the purpose of this paper to discuss

a general stochastic model for the description of the course of chronic diseases

and the outcome of clinical trials. Our model is based on the theory of semi-

Markov processes, (c.f. Pyke [1], [2]).

2. Earlier Models

Several studies have appeared in the literature with the same object as the

present paper. However these earlier works treat the model as a strictly Markov

process. The first of these, by Fix and Neyman, [3], discusses a four state

continuous Markov process for the treatment of data on cancer patients. The four

states were:

1. Under treatment

2. Dead following treatment or operative death

3. Alive, not under treatment for cancer, and

remaining under observation.
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4. Lost after apparent recovery, either through

death not due to cancer or through difficulties

of tracing the patient.

The equations characterizing Fix and Neyman's model are

dPd -- - AP (2.1)
dt

where P is the vector of state probabilities, and A is a constant matrix.

A formal solution to (Z. 1) can always be written P(t) = exp (-At) P(O), hence

the probability of being in any one state at time t can always be written as a

weighted sum of negative exponential terms. Fix and Neyman also discuss

estimation procedures for fitting the parameters in their model.

Marshall and Goldhamer, [4], presented several discrete Markov chain

models as a framework for the handling of data in connection with the

epidemiology of mental disease. Their object was to characterize the age

distributions of the mentally ill population. The states which figured in their

analysis were the following:

1. Alive, sane

2. Alive, insane (mild) unhospitalized

3. Alive, insane (severe) unhospitalized

4. Insane, hospitalized

5. Dead, outside of mental institution.

The authors give a long discussion of their data and estimation procedures. Since

their model supposes as the underlying descriptive equations
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P(n + 1) = A P(n) (2.2)

where P(n) is the vector of state probabilities after n epochs, the form

of the solution is always fixed to be P(n) = An P(O) .

The most recent discussion of the Markov model has been given by Alling,

[5], as an aid in interpreting data on pulmonary tuberculosis. Alling's model

uses the discrete Markov chain, as might be natural in a situation involving

periodic examinations. The model provided excellent agreement with experimental

data.

All of the Markov models (with constant transition probabilities) have in

them the assumption that the probability density for a stay in a given state is

of the form p(t) = X exp (-Xt) or the discrete analogue. In order to introduce

a more general model to describe the same phenomena, a somewhat deeper

discussion is required of the way in which time is introduced as a descriptive

measure of the disease. Toward this end we note that time can be involved in

the history of a disease, either as external or internal time relative to the

patient. A strictly Markov model assumes that transitions in the state of a

patient depend only on the time external to the patient. As an example, the

susceptibility of a person to catching a cold may depend more on the season than

when he has last had a cold. On the other hand, the change of state of a person

with a cancerous disease will depend more critically on how long he has had

the growth than on other external circumstances. It is for the description of

diseases which require that internal time be taken into account that the theory

of semi-Markov processes is appropriate.
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3. Elements of the Model

We shall consider a model consisting of two mutually exclusive sets of

states A and T in which the patients may find themselves. The state A

corresponds to the set of absorbing states and T refers to the transient states.

The set A can be void as in the description (to a good approximation) of the

cold; it may consist of a single state, as for example death in the description

of acute leukemia; or it may consist of two states, cure or death, as in a

description of tuberculosis. We will assume stationarity of the processes, in

the sense that aging effects will not be taken into account. We further assume

the following:

(a) The duration of stay in any state is a random variable.

Specifically, the probability density for a stay in state i which

is followed by a stay in state j will be denoted 3 by (.l (t)

where the (pii (t) may contain delta function components.

We also define the survival function (tail probability integral)

Co

Oij~t) f pj (x) dx . (3.1)
t

(b) The probability of a change from state i to state j in a

single step (conditional on leaving i ) is pi. where the pij

are independent of time.

(c) The p.d.f. (,it) is assumed to possess moments of any

order. The kth moment of (pii(t) will be denoted by mij(k)

3 It is particularly convenient to have two subscripts on these probability distribu-
butions since we may be concerned with the termination of stay in a state by
different causes. In the present work, in which we are concerned mainly with
an absorbing set of states, it will be found that only unconditional probability
densities are really necessary.
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In addition to the notation and assumptions introduced above we define

Ui(t) = Pr {patient in state i at time t }

Si (t)dt Pr {patient leaves state i during (t, t + dt) }

k0 (3.Z)

i(t) , P ij Ij(t) , mi(k) =f tk •(t) dt
3 0

i(t) =f Vi (x) dx.

t

Since we also allow for the possibility that an initial occurrence of state
0

i might have a different p. d. f., define 9 0.(t) as the p. d. f. of the initial
1)

stay in state i followed by a stay in state j . Also, m. 0(k) will denote the
1)

corresponding kth moment.

Matrices or vectors of quantities will be denoted by bold face type; the

same symbol being used for the matrix as are used for its components.

Consequently we have

U(t) = (U 1 (t), U2(t), . Un(t) )

W (t) = (W l(t), W 2(t), ... Wn(t))

0 ( 0 (3.3)

0o 0
M(k) =(mi(k) 6), M (k) = (mi (k) 6ij)

1 13 1 1
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The matrix P = (P will be written as

A T

(sT (3.4)

where P = (pij) corresponds to states for which i, j E T and Q :: (pij)

correspond to states for which i e T and j E A

The first problem of interest for our model is the calculation of U(t)

We shall first show that U(t) is related to w(t), and then show that W(t)

is the solution to a matrix renewal equation. The components of IT(t) satisfy

the equation 0

Ui(t) = U0(t)+ 0 fk} Pki •i(t -T) dT (3.5)
kET 0

or, in matrix notation

0 tU (t) = U0(t) + f W (T) P IZ(t -T) dT .(3.6)

0

The derivation of (3.5) is immediate. If the patient is in state i at time t

he is either in that state for the first time, or the last transition took place at

some time T to an occurrence of state i which is still in progress. It can be

observed from (3.6) that U(t) is simply related to w(t) and other known

functions. The matrix w(t), in turn, can be formed as the solution to a matrix

renewal equation, which reads, in component form
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o (t)+ k f T k Pki ki (t - r)dT (3.7)
kET 0

where w iO(t) can alternately be expressed as

W.0(t) = pO(t) (O (3.8)
1 1

and the U. 0) (t) are known initial values of the probability of being in state
1

i The equivalent matrix representation of (3. 7) is

0 t
w(t) ( 0t) + f W (T) p q(t - T) dT (3.9)

"'0

The derivation of (3.9) is similar to that of (3.5)

Since the fundamental equations for the description of our model are in

convolution form, the use of Laplace transforms casts them in algebraic form

and facilitates the calculation of moments. The Laplace transform of any

function of time will be denoted with an asterisk and an argument s e.g.

f= e- c(t)dt (3.10)
0

where the Laplace transform of a matrix is the same matrix containing as elements

the transform of the original elements. With this convention (3.6) and (3.9)

yield the results:

W *(s) = c0* (s) + W (s) Pp (s) (3.11)

U (s) =U (S) + W (s) P (s) . (3.12)



#396 -9-

The first line can be solved for wo (s) when Re(s) _> 0 since [II- P*(s) 0

in the right hand s plane. To see this, we note first that I-P P (0) =(6ii pij

We further have the ccndition4

I > p (3.13)

where strict inequality holds for at least one value of i . Hence I- PT( (0)

has a weakly dominant main diagonal and its determinant therefore differs from

zero, [6] . When Re(s) > 0 we know that Y"(s)! S1 , hence the inequality

of (3. 13) is strengthened.

The solution to the relations of (3. 11) and (3. 12) can therefore be written

* 0*-* l(JS) (o*s) [I --P ()

* 0* 0* -* -- *
U (s) = U (s) + o0(s) [I-PPr (s)] P 4 (s) . (3.14)

It can easily be shown, following Feller's proof for the ordinary renewal equation,

[7], that the elements in w(t) which are derived by inverting the Laplace

transform w (s) are all non-negative. If the set A is void, i. e., there are

no absorbing states, then we can use standard Tauberian techniques to derive

asymptotic expressions for w)(t) and U(t)

4 In the set A is void, similar considerations lead to the same conclusion for
for Re(s) > 0.
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4. First Passage Times

We now turn to first passage time problems which are of great importance

in applications involving, for example, the comparative efficiency of different

drugs in ameliorating the course of a chronic disease. In the particular problem

which we studied, the treatment of acute leukemia, a fatal end is inevitable

and the set A consists of a single state. It is then plausible to base a test

of efficiency of a drug on the amount of time that a patient is kept alive.

Another alternative would be to base efficiency on the amount of time that a

patient is kept in a state of relative comfort.

The first question that might reasonably be asked is, how long will the

patient remain in one of the disease states? Let f(t) be the probability density

for the time to reach some absorbing state. Then we have

f(t) = (t) } = (t) Q.
icT jEA

Questions relating to the particular absorbing state in which the patient

finally finds himself can be answered by reference to well-known results from

the theory of finite Markov chains since these results are independent of

duration of stay. For this purpose, let H be a single absorbing state and Q H

be the column vector in A corresponding to state H . Then the probability

that a patient will eventually end in the absorbing state H is

q 0H = U0(1- P)-1 QH (4.2)
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When A consists only of the single state H, it is easily verified that

5
qH = 1 . The probability density function for the amount of time spent in the

transient states T conditional on final absorption by H is

fH(t) - (4, 3)

We now proceed to calculate expressions for the moments by using the

value of w (s) given in (3. 14) as a moment generating function. The kth

moment for the total stay in the set of T states conditional on absorption by H

is

E(tk) = Ak QH/qH (4.4)

where the Ak are defined recursively byk+1

Ak+l(I P) = U. M (k+ 1) +( 1 Ak k M(l)

.k+l ) 0 - l2{ )k-1 P M(Z} + .. + U0(-)I~+} 45

5 We are indebted to Dr. Joan Rosenblatt for pointing out that if A is a single
state than Q can be written in alternative form as

Q =(I- (
co

From this form it is easy to see that f f(t) dt = 1 , since w (0) = (O) (I-
0
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The first two of the Ak are explicitly

A, U0 {M0o} + (I - - M(l) (I -

A =U 0 {M 0(2) + (I - - M(2) +

+ [M 0 ( + •(I--(I-p-I (4.6)

Formal expressions for the higher values of the subscript are easily derived

in this fashion. When the set A consists only of H, there is some

simplification afforded by using the expression for Q in terms of (I - P)

since this term will cancel (I - F)-1 which post-multiplies the expression for

Ak

5. Distribution of Time Spent in a Single State

5.1 The p. d.f. (pi. (t) = 9i (t). One further distribution that has potential

application in drug comparisons is the distribution of time spent in a single one

of the transient states. We shall first find the distribution of the time spent in

the particular transient state i(i E T), on the assumption that (ij(t) = 'i(t) .

Let the partition of the transition matrix P be

A i T-jKI 0 0 A

Y a 1I T-i (5.1)
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Thus a is a vector which contains all the information about transitions from

T - i to i; P is a vector of transition probabilities from i to T - i; etc.

Note that the probability of a state beginning in T - i will lead to state i

before it leads to an absorbing state is

R = a+ r1 a+ I o+ ... ) (5.2)

Let h.L h be the probability that a patient once in state I will return to

state i before reaching an absorbing state. Further, let h be the probability
ji

that a patient in state j will-reach state i before reaching an absorbing state.

We shall find the Laplace transform for the time spent in state i , starting

from state j

00

(S)= P(n)v n(S) (5.3)j n=0

where P (n) is the probability that the patient is in state i exactly n times

beginning from an occurrence of state j, and v (s) is the Laplace transform of
n

the probability density for the total time spent in occurrences of state i

The parameters h.. and hj, are given in the notation of (5.1) by
11 U1

h. = P1(-f c•= pIR
11

h= (R) j =RI - r)-I a] (5.4)

The derivation of h . follows immediately from the definition of R; the
ji l

derivation of h.. follows from the expansion
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hi- {Pj (Ijk + P •(12)jk + ' •(5.5)
R jET-i

The patient starts in state i, makes a transition to state j with probability

j.; remains in T - i one or more epochs ending in state k with probability
I

[P ([I - MI)-], ana finally returns to i with probability a

The probability that there are exactly. n occurrences of state i is

h hn.- (1 hj iA - ii)

P (n) = -1hji' j* i, n = 0

Sh ih. (1- hii),n j i, n> 1 . (5.6)
* A .i

Hence, we find for l. (s-) the expression3

, (1-hi)(Pi (S) 6i h .i(1-h i • (S)
(S)= h , + - h + ( i (5.7)

I1 hi 1 S) 1-h (S)
-1- -hii 1(s)

If we denote the kth moment of the total sojourn time in state i by a patient

who starts out in state j by . .ji (k) we find for the first two moments

j i (l) L-[mO(1)+ 1 -ih 11 hi +1 -1hl-h, 6i÷ 1-h.
31 11-h1

2m. (1)mi(l) h+ii h m(1)

(2') [M 0(2)+ + i i

ii

2 2 22h [m(1)Ji_1_]_
2hii I m,(2) [mAM[h. (5.8)

2 ]6ij + ji(1- 6 ij h + 2
(1 - hii) ii (1 - hii)
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5. 2 General Case. The more general case for determining the distribution

of total time spent in the transient state i when the sojourn time distribution

•ij (t) depends on the state immediately following is quite complicated. In

this section we will only indicate the nature of the results. Let i(t) dt denote

the probability density for the event that the patient is in state i (i E T) for

an amount of time in (t, t+ dt) . Also define W to be the vector of

probabilities that a chain of states starting from some state j E T - i will end

in absorption without leading to state i . The expression for W is seen to

be

2i -i
W y+fly+fl y+... . (l) y (5.9)

on the assumption that A consists of a single state.

Then the Laplace transform of •i(t) can be written as the sum of two

components

S s = s) + ýi24s) (5.10)

where
0*

0* [X (s)Ri[k *(s)W i
((s) (0) (X°* s) wJ ++6X.(s)+ -- -l - [X (s) Rhi

(Z 130(0) R.) [xL*(s) W]I1
[Po(s) =R.(i w.1

121 - [X*(S) RI i (5.I11)
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and where

x (s) = (Pij Vo,(s)), X 0* (s) = (P ¢pi0 (s)), i, j ,E T

0* 0* *(L0*(5 ax iA (S) = (Pij (P A (s)), 9 iA (s) = Pij Vij (S)
jEA

The moments of the duration of time spent in state i are obtained by
*

successive differentiation of T.(s) . Defining the vectors

S=(Pij m ?j(k)), 92k = (Pij mij (k)) (5.12)

the first two moments can be written

E(ti) = U0 0 W + mlA(Q) 0( R) (P W) + (PR) (Q I W)
i W1 - PR

+(PR) (PW) (E2 IR) 1 LU~R E ~21W (PW) (S2, R)1

(1-PR)2  joi + J(-R)2
(Q R) (Pw} + 2(S2 R) (QlW) + (PR)(S2 W)

i i 2 + A(2) + 1-PR

+ 1 [2(120R)(PW)I(QR) + Z(PR)(QlR)(S21 W) + (PR)(PW)(n2 R)]

+ 2 (PR)(P•W)(2R)2 + (Z UO R[ W(1 - PR) 3 1 j~i j R) IP

2 (12 W~)(01 R) + (PW) ( R) 2(PW) (QI R)]

( ( - P R) 2 (1- _PR)3 I
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6. Application of the Model to Patients With Acute Leukemia

6.1 Outline of the six state model. A large scale set of clinical trials

was conducted by Acute Leukemia Group B (Frei et al. (8]) on patients having

acute-leukemia. In this section we will apply our serni-Markov model to a

portion of the data from these clinical trials.

The data considered here are from the records of 54 patients with lymphocytic

leukemia. All patients entered these clinical trials while in a state of relapse.

The patients received therapy and either continued in relapse, expired, or had

a partial or complete remission. The stay in a remissive state is only temporary

and the patients ultimately suffer a relapse. Additional therapy is given and

the patients either expire or again reach a remissive state. Ultimately all

patients expire as the effect of the therapy is only transitory. Among the

patients in the study discussed here, no more than two remissions were attained

by any patient. The therapy is described by Frel et al, (8], and essentially

consists of two phases. Phase I consists of initially giving the patients

methotrexate (MTX). Phase II consists of therapy with 6-mercaptopurine (6-MP).

Phase I was continued for all patients in the initial relapse state. If at the end

of six weeks, the patients had not responded to the treatment (and were still

alive), the treatment was terminated. A lapse of two weeks was allowed after

which the patients were placed in Phase II. The particular phase which the

patient was receiving was discontinued when the patient relapsed from a remission

state. The patient was then placed in the alternate phase.
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In our application we will be mainly interested in the distribution of

the time to failure. Further, since a remissive state is always followed by a

relapse, we will combine the sojourn time in a relapse state with that in the

remissive state which immediately preceded it. Also the data seem to indicate

different characteristics for the sojourn times in the various states. These

are a function of the number of times the patient has been in the state.

With these characteristics of the process in mind, we define the six states:

S 0 failure (death)

SI: initial relapse state (condition of patient on entering study)

S Z first partial remission (also includes subsequent relapse)

$3: second partial remission (includes subsequent relapse)

S 4: first complete remission (includes subsequent relapse)

5: second complete remission (includes subsequent relapse)

The communication between states is summarized in Figure 1.

Some typical case histories are:

Patient number Condition Duration of Stay in State (weeks)

14 initial relapse 12
failure

88 initial relapse 2
first partial remission 34
relapse 10
failure

284 initial relapse 4
first complete remission 13
relapse Z4
second partial remission 40
relapse 8
failure
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Applying equation (3.14) with five transient states results (after some

algebra) in the Laplace transforms for w (s) and U *(s); i. e.

<(s) -P (s)

s2(s) . plz2  (s) 92(s)

3(s) p12 p 2 3 1I (s) qz(s}qs(s) + P14 P4 3 q 1(s) •(s}q'(s)

W )P( * (S) (P*
•4(s= p14 1s 4(s)

5(s) Pi 2 P2 5 (PI (s) q2(s) V5(s) + P14 P4 5 (i) N(s) P5(s)

(6.1)

U1~~ 2s • s
Uz•S) - p12 <°l(s) 4•2(s)

* * * * * * *

U (s) = P1 P2 P23 *l (s) 3(S ) s p14 p43 q((s) (94(s) +3(s)

U(s)= P14 (°l (s) 4

U5(s =P12 P 2 5  (s) (9*(s) c5(s) + P14 P4 5 * (s) q4(s) c5(s)

The probability density function f 0(t) of the time to reach S from S1

can now be obtained from (4. 3) with QH = (P10 , P20 , P3 0, P4 0 , PS 0 ) "

Hence we have
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5
f 0 (t) W i •i(t) Pio (6.2)

1=1

where wi(t) can be obtained by taking the inverse Laplace transform of

Ws)

The moments for the time to reach the failure state can now be immediately

written down by using equation (4.4) E(tk) = Ak Q0 with the recursive relation

(4. 5) . The results for the mean and variance are

E(t) = ml(1) + p12 m2(1) + m3 (l) [P12 P2 3 + p14 P4 3 ] + p14 m4

+ m5 [Pl2 P2 5 + p14 P4 5]

S2(t) 2 2 2 21o- +P 12 o2 +a3 +p 1 4 o 4 +b 5 + P51 2 (1-P)1m 2)()

+ a(l-a) m2(1) + P 4(l-P 1 4 ) m 2(1) + b(l-b) m 2(1)

+ 2{m (l) m3 (1) [p 2 (P2 3 - a)] - m.(1) m4 (l) PI 2 P 4

+ m ?(1) m 5 (l) [P12 (P25 - b)] + m3 (l) m4 (l) [p 14 (p 4 3 - a)]

3m(l) m5 (l) ab + m4 (l) m5 (l) [P14 (P 4 5 - b)]} (6.3)

2 2where - = m(2) - mi(1) , and
1 1

a = P1 2 P 3 + Pl4 P43' b = P1 P2 5 + P 4 P4 5 '
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In applying the data to the model it is of interest to study the distribution

to reach the failure state, conditional on the patient also reaching a remission

state. Denoting the p. d. f. of this conditional distribution by g0 (t), we have

g f0tf(t) - P0-(t) t10o/ - po) (6.4)

0 1  - PL0(t) p/(1P

The mean and variance of the time to reach the failure state (6. 3) is

similarly modified by replacing p 0 by p1 0/(1- P .

Another complication in applying the model is that the treatment given the

patients depended on the length of time they remained in the initial relapse

state. Those patients who stayed in the initial relapse state for a period of

eight weeks or less were in Phase I, whereas those who remained for more than

six weeks received Phase I therapy followed by Phase II therapy.

6. 2 Estimation of parameters. It remains to estimate the parameters in

the model. These are the (p1 .) and the sojourn time distributl6n for the various

states. The relative frequencies observed in the clinical trials were used as

estimates of the p " The numerical results are:
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S0 S1 82 S3 84 S5

1 0 0 0 0 0 S0

5/31 0 10/31 0 16/31 0 S1

P = 5/10 0 0 3/10 0 2/10 SI2

1 0 0 0 0 0 S3

9/16 0 0 4/16 0 3116 S4

1 0 0 0 0 0 S5

S0 S1 S2 S3 S4 S5

1 '0 0 0 0 0 S0

8/23 0 4/23 0 11/23 0 SI 1

1 0 0 0 0 0 s2

P 0 0 0 0 0 0 S3

9/11 o o o o o s
9/1 0 0 0 0 0 54

1 0 0 0 0 0 J S 5

The subscripts I and II refer to those patients that either were in Phase I or

II when they left the initial relapse state.

An investigation of the distribution of sojourn times within the various

transient states showed that these distributions could very well be approximated
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by gamma distributions; i. e.

•ta-i k

X( (at) _Xt, a>0 (6.5)

The parameters (a, X) were estimated by the method of maximum likelihood with

the aid of the very convenient tables of Wilk, Gnanadesikan, and Huyett, [9]

Due to the small number of patients in group II, we decided to combine the

sojourn time data for groups I and II. Table I summarizes the results of these

calculations.

TABLE I: Maximum Likelihood Estimates of the Parameters of
the Gamma Distribution

State a n (sample size)

S2 (first P.R.) 2.33 0.101 14

S3 (second P.R.) Z.87 .122 7

S4 (first C.R.) 4.71 .132 27

S5 (second C.R.-) 15.54 .463 7
_ __________________ _______________________________
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Table II summarizes the sample means and variances for the two groups.

TABLE H: Sample Means and Variances (Patients reaching remission only)

-(2 n (samplefn (1) •size)
I II I II I II

SI (initial relapse) 4.2 12.6 1. 7 11. 7 26 15

S2 (first P. R. ) 19.2 33.0 124 301 10 4

S3 (second P. R.) 33.0 -- 215 -- 7 0

S4 (first C. R.) 38.6 31.4 435 260 16 11

S5 (second C. R.) 34.8 31.0 98 128 5 2

The initial relapse state sojourn time distribution (conditional on reaching

remission) for groups I and II are both truncated distributions. The distribution

for group I is truncated at the upper tail at eight weeks; whereas group II is

truncated at the left tail at eight weeks. Since the observations are in discrete

time units (weeks) this truncation problem can be handled by taking these sojourn

time distributions to be discrete distributions. The estimates of the point

probabilities used were the observed relative frequencies. These relative

frequencies are:

Weeks I(11) 1(9) 2(10) 3(11) 4(12) 5(13) 6(14) 7(15) (18) (22)

I P = 0 2126 6126 8/26 5/26 4/26 1/26 0 0

II P= 2/15 2/15 1/15 5115 2/15 1/15 0 1/15 1115
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The weeks in parentheses refer to the times for group II.

A check on our model can be obtained by comparing the sample mean and

variance of the time to reach failure with the theoretical formulae given in (6. 3).

The numerical results (conditional on going to remission) are:

I Ii

Data Model Data Model

Mean 48.4 49.7 48.5 48.6

Variance 515 525 358 408

The agreement is very good.

We now turn our attention to estimating the distribution of the time to reach

the failure state (conditional on reaching a remissive state). The probability

density function can be written explicitly from (6. 2) and (6. 4); i. e.

g0 (t) = (1 - Pl 0 )- {Pz0 Piz [*1 ( 2] + P3 0 Pz P2 3 (P1 * F 2 * 93j

+ P4 0 P1 4 [9 1 * 941 + P30 P14 P4 3 [9 1 * 93* 941

+ P5 0 Pi2 P2 5 [191* '92* 995 ]+ P5 0 P1 4 P4 5 1[9 1 * 994 * 95} (6.6)

(The notation (l * (p denotes the convolution of p91(t) and 9p.(t) etc.). Note

that g0 (t) is made up of a mixture of distributions which involve convolutions

of gamma distributions. We approximated the convolution of gamma distributions

by a gamma distribution having the same first two moments. It was felt that a

more sophisticated approximation was not necessary.
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Figure II compares the cumulative distributions obtained from the model

with the empirical cumulative distribution for both groups I and IL. Both the

empirical and theoretical distributions for II have been adjusted by using 8

weeks as the origin. The agreement of the model with the data is excellent

for group I. However the agreement at the lower tail for group IIlis not good.

This probably is due to the nature of the data where at the early stages of

phase UI treatment, there are undoubtedly some effects from phase I still

present. Also on Figure II, the failure time distribution for patients not

going into remission is given for comparison.
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